238 research outputs found

    Identification of Topological Features in Renal Tumor Microenvironment Associated with Patient Survival

    Get PDF
    Motivation As a highly heterogeneous disease, the progression of tumor is not only achieved by unlimited growth of the tumor cells, but also supported, stimulated, and nurtured by the microenvironment around it. However, traditional qualitative and/or semi-quantitative parameters obtained by pathologist’s visual examination have very limited capability to capture this interaction between tumor and its microenvironment. With the advent of digital pathology, computerized image analysis may provide a better tumor characterization and give new insights into this problem. Results We propose a novel bioimage informatics pipeline for automatically characterizing the topological organization of different cell patterns in the tumor microenvironment. We apply this pipeline to the only publicly available large histopathology image dataset for a cohort of 190 patients with papillary renal cell carcinoma obtained from The Cancer Genome Atlas project. Experimental results show that the proposed topological features can successfully stratify early- and middle-stage patients with distinct survival, and show superior performance to traditional clinical features and cellular morphological and intensity features. The proposed features not only provide new insights into the topological organizations of cancers, but also can be integrated with genomic data in future studies to develop new integrative biomarkers

    Decomposing and Coupling Saliency Map for Lesion Segmentation in Ultrasound Images

    Full text link
    Complex scenario of ultrasound image, in which adjacent tissues (i.e., background) share similar intensity with and even contain richer texture patterns than lesion region (i.e., foreground), brings a unique challenge for accurate lesion segmentation. This work presents a decomposition-coupling network, called DC-Net, to deal with this challenge in a (foreground-background) saliency map disentanglement-fusion manner. The DC-Net consists of decomposition and coupling subnets, and the former preliminarily disentangles original image into foreground and background saliency maps, followed by the latter for accurate segmentation under the assistance of saliency prior fusion. The coupling subnet involves three aspects of fusion strategies, including: 1) regional feature aggregation (via differentiable context pooling operator in the encoder) to adaptively preserve local contextual details with the larger receptive field during dimension reduction; 2) relation-aware representation fusion (via cross-correlation fusion module in the decoder) to efficiently fuse low-level visual characteristics and high-level semantic features during resolution restoration; 3) dependency-aware prior incorporation (via coupler) to reinforce foreground-salient representation with the complementary information derived from background representation. Furthermore, a harmonic loss function is introduced to encourage the network to focus more attention on low-confidence and hard samples. The proposed method is evaluated on two ultrasound lesion segmentation tasks, which demonstrates the remarkable performance improvement over existing state-of-the-art methods.Comment: 18 pages, 18 figure

    Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image

    Get PDF
    Ultrasound (US) imaging has the technical advantages for the functional evaluation of myocardium compared with other imaging modalities. However, it is a challenge of extracting the myocardial tissues from the background due to low quality of US imaging. To better extract the myocardial tissues, this study proposes a semi-supervised segmentation method of fast Superpixels and Neighborhood Patches based Continuous Min-Cut (fSP-CMC). The US image is represented by a graph, which is constructed depending on the features of superpixels and neighborhood patches

    Subsidence monitoring of offshore platforms

    Get PDF
    AbstractThe normal subsidence monitoring technologies, used in civil engineering, are hard to apply in ocean engineering. Because it is hard to find a fixed reference for subsidence monitoring. A new method, which is suitable for subsidence monitoring of offshore platforms, is proposed in this paper. Firstly, the compression characteristic of the soil was analyzed and the harms of subsidence are discussed. Based on the analysis, the subsidence monitoring method was given. Finally, an real application is shown. Some advanced measurement technologies, such as the FBG strain measurement techniques and so on, were used in this application. The real application indicates that the new method is suitable for the subsidence monitoring of offshore platforms

    Segmenting CT prostate images using population and patient-specific statistics for radiotherapy: Segmenting CT prostate images for radiotherapy

    Get PDF
    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy

    A Novel Adaptive Level Set Segmentation Method

    Get PDF
    The adaptive distance preserving level set (ADPLS) method is fast and not dependent on the initial contour for the segmentation of images with intensity inhomogeneity, but it often leads to segmentation with compromised accuracy. And the local binary fitting model (LBF) method can achieve segmentation with higher accuracy but with low speed and sensitivity to initial contour placements. In this paper, a novel and adaptive fusing level set method has been presented to combine the desirable properties of these two methods, respectively. In the proposed method, the weights of the ADPLS and LBF are automatically adjusted according to the spatial information of the image. Experimental results show that the comprehensive performance indicators, such as accuracy, speed, and stability, can be significantly improved by using this improved method

    Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis

    Get PDF
    In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers
    • …
    corecore